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Potential scattering with field discontinuities at the boundaries

T. D. Visser* and E. Wolf
Department of Physics and Astronomy and Rochester Theory Center for Optical Science and Engineering,

University of Rochester, Rochester, New York 14627
~Received 8 June 1998!

We discuss the validity of the approximate scalar theories for scattering of electromagnetic waves, which
implicitely assume that the field and its normal derivative are continuous at the the scatterer’s boundary.
However, as is well known certain components of the electromagnetic field are discontinuous across such a
boundary. We present a modified formalism that takes these discontinuities into account. We show that in some
case the total scattering cross section may differ appreciably from that predicted by the usual theory.
@S1063-651X~99!02902-5#

PACS number~s!: 41.20.Jb, 42.25.Fx, 42.25.Gy
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I. INTRODUCTION

Because of the complexity of the theory of scattering
electromagnetic waves on macroscopic bodies, the situa
is often highly idealized. A frequently used idealization co
siders the scattering body to be a perfectly conducting
dium which, consequently, gives rise to a strong reflec
wave. While this approximation is often adequate with m
crowaves and radio waves, it is seldom appropriate in
optical region of the electromagnetic spectrum. For exam
when one considers the scattering of a light wave at an
erture, the material of the screen containing the apertur
frequently better approximated by assuming that the scr
is highly absorbing rather than that it is highly reflecting. T
difference between these two situations is far reaching,
cause in the case of a perfectly conducting medium one is
to a boundary value problem, whereas in all other cases
encounters a saltus problem, i.e., a problem involving jum
of the electromagnetic field vectors at the boundary of
medium.

Another approximation often used consists of ignoring
polarization properties of the field by treating it as a sca
field. While the scalar problem can often provide some
sight into the nature of the scattered field, its use disgu
the following difficulty: As is well known some of the com
ponents of the electromagnetic field vectors are discont
ous across boundaries of the scattering bodies@1#. The field
discontinuities themselves depend on the generally unkn
field. It is this feature which makes electromagnetic scat
ing problems much more complicated than the quantu
mechanical problems of potential scattering. To our kno
edge the implications of the discontinuities in the fie
variable at sharp boundaries of scattering bodies have
been previously investigated in the scalar model, excep
Kottler’s theory of diffraction at a black screen@2#. In the
present paper we investigate how the usual scalar inte
equation formalism can be extended to take into acco
possible field discontinuities. It is to be noted that
Kottler’s theory the field discontinuities are prescrib
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whereas in our approach they are not. While we do not
dress the question of how to determine the actual disco
nuities, we obtain some quantitative results which indic
that in some cases the effect may be significant even at l
distances from the scatterer. The relationship betw
boundary value problems and saltus problems is discusse
Ref. @3#.

In Sec. II of this paper some relations are noted wh
involve the discontinuities of electromagnetic field vecto
for scattering by bodies with sharp boundaries. In Sec. III
consider scalar scattering of a plane wave by a homogen
sphere when the field and/or its normal derivative suffe
discontinuity on its boundary surface. We show how the d
continuities affect the scattering cross section and we ill
trate the results by a numerical example. In Sec. IV we
tain a generalized integral equation of potential scatter
which includes the effects of discontinuities of the field a
of its normal derivative on the boundary.

II. BEHAVIOR OF THE ELECTROMAGNETIC FIELD
ACROSS THE BOUNDARY OF THE SCATTERER

Consider the two-dimensional scattering configurat
which is depicted in Fig. 1. A current sheet distributionJ
5(Jx, 0,0) which is situated in free space generates an e

,

FIG. 1. A two-dimensional scattering configuration. A curre
sheet~infinite in thex andy directions! situated in free space, with
J5(Jx,0,0), generates an electromagnetic field that is scattere
the volumeV which has permittivitye. The pointsA, B, andP lie
on the boundary of the scattering volume.
2355 ©1999 The American Physical Society
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2356 PRE 59T. D. VISSER AND E. WOLF
tromagnetic fieldE5(Ex,0,0) andH5(0,Hy,0). The field is
scattered by an isotropic, homogeneous and nonconduc
mediumV with permittivity e. Both the current distribution
and the scatterer are assumed to be infinite in they direction.
This implies that the field is independent ofy. In steady state
with time dependence exp(2ivt), the x component of the
first Maxwell equation in SI units reduces to

]zHy5 ive~x,z!Ex , ~2.1!

in source-free regions. The pointP at the boundary of the
scatterer is chosen so that the outward normal coincides
the direction ofz. P lies in the planez50. Since bothHy and
Ex are tangential to the boundary atP, they are continuous
there. However, it follows immediately from Eq.~2.1! that
the derivative]zHy is discontinuous atP. If we define

S ]Hy

]z D 2

[ lim
z→20

]Hy

]z
5 iveEx~P!, ~2.2!

S ]Hy

]z D 1

[ lim
z→10

]Hy

]z
5 ive0Ex~P!, ~2.3!

then

DS ]Hy

]z D[S ]Hy

]z D 1

2S ]Hy

]z D 2

~2.4!

5 ivEx~P!~e02e!5S e0

e
21D S ]Hy

]z D 2

.

~2.5!

We conclude that in this configuration the field compon
Hy is continuous atP, whereas the normal derivativ
]Hy(P)/]z has a discontinuity.

Next consider the boundary pointsA5(x1,0,z) and B
5(x2,0,z) in Fig. 1. The portion of the boundary betwee
them is parallel to thex axis. SinceEx is tangential to the
boundary,

Ex~A!15Ex~A!2, ~2.6!

Ex~B!15Ex~B!2, ~2.7!

where, as before,1 and 2 indicate that the limit is taken
from outside and from inside the boundary of the scatte
respectively. One has

Ex~B!12Ex~A!15~x22x1!S ]Ex~B!

]x D 1

1¯ , ~2.8!

Ex~B!22Ex~A!25~x22x1!S ]Ex~B!

]x D 2

1¯ . ~2.9!

Since Eqs.~2.8! and ~2.9! hold for any distancex22x1 , it
follows that

S ]Ex

]x D 1

5S ]Ex

]x D 2

, ~2.10!

for any boundary point betweenA and B. In addition, we
have at these points
ng

ith

t

r,

~“–D!15~“–D!250. ~2.11!

where D(x,z)5e(x,z)E(x,z) is the electric displacemen
vector. Hence,

e0F S ]Ex

]x D 1

1S ]Ez

]z D 1G50, ~2.12!

eF S ]Ex

]x D 2

1S ]Ez

]z D 2G50. ~2.13!

Sincee0Þ0 andeÞ0, we have, if we use Eq.~2.10!,

S ]Ez

]z D 1

5S ]Ez

]z D 2

. ~2.14!

By using the well-known ‘‘pill box’’ construction~Ref.
@1#, Sec. 1.1.3!, it can be shown that for the normal comp
nent of the electric field at points betweenA andB

e0Ez
15eEz

2 , ~2.15!

or, equivalently,

Ez
12Ez

25S e

e0
21DEz

2 . ~2.16!

We conclude that in this configuration the outside limit
the normal derivative]Ez /]z at points that lie betweenA
andB is equal to the inside limit, whereas the field comp
nentEz has a discontinuity there.

III. PLANE WAVE SCATTERING BY A HOMOGENEOUS
SPHERE IN THE PRESENCE OF DISCONTINUITIES

As an example of how a field discontinuity can affect t
far field and the cross section in a scattering process,
consider the scattering of a scalar plane wave by a homo
neous sphere. We use the method of partial waves whic
described, for example, in Refs.@4–6#. Our objective is to
obtain an expression for the phase shift, from which the s
tering amplitude and the total scattering cross section can
determined.

We assume that both the fieldU and its derivative]U/]n
along the outward normalnW have a finite discontinuity at the
boundary of the scatterer:

DU[U1~r !2U2~r !, ~3.1!

DS ]U

]n D[S ]U~r !

]n D 1

2S ]U~r !

]n D 2

. ~3.2!

As before, the superscripts1 and2 indicate limiting values
taken from outside and inside of the scatterer, respectiv
Also, within the accuracy of the linear theory, bothDU and
D(]U/]n) are proportional toU2 and (]U/]n)2, respec-
tively, i.e.,

DU5aU2~r !, ~3.3!

DS ]U

]n D5bS ]U~r !

]n D 2

, ~3.4!
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PRE 59 2357POTENTIAL SCATTERING WITH FIELD . . .
wherea andb are constants.@In the first example of Sec. I
a50, b5(e0 /e21), and in the second examplea5(e/e0
21), b50.#

Let us consider a homogeneous scattering potentialF of
the form

F~r !5H F0 if r ,R,

0 if r .R,
~3.5!

whereF0 is a real-valued constant. We expand the field
spherical harmonics. We assume that the incident plane w
propagates along thez axis. The azimuthal dependence th
drops out, and we have

Uk~r ,u!5(
l 50

`

al~k!Ul ,k~r !Pl~cosu!, ~3.6!

with al(k) being expansion coefficients,k the free space
wave number,Ul ,k(r ) radial functions, andPl(cosu) Leg-
endre polynomials. Inside the scatterer,Ul ,k is taken to be
proportional to the spherical Bessel functionj l(k0r ):

Ul ,k~r !5Cl j l~k0r ! ~r ,R!, ~3.7!

with

k0
2[k21F0 ~3.8!

andCl are constants. Outside the scatterer, the field may
expressed as a superposition of spherical Bessel func
j l(kr) and spherical Neumann functionsnl(kr):

Ul ,k~r !5 j l~kr !2tand lnl~kr ! ~r .R!. ~3.9!

The constantCl and the phase shiftd l are determined by
matching the interior solution~3.7! and the exterior solution
~3.9! at r 5R, taking the boundary discontinuities~3.1! and
~3.2! into account. From the phase shift, the scattering a
plitude f (u,k), the differential scattering cross sectio
ds(u,k)/dV and the total scattering cross sections tot(k) can
be calculated, and one finds that

f ~u,k!5
1

2ik (
l 50

`

~2l 11!Pl~cosu!~e2id l21!, ~3.10!

ds~u,k!

dV
5

1

k2 (
l 50

`

(
l 850

`

ei ~d l2d l 8! sind l sind l 8

3~2l 11!~2l 811!Pl~cosu!Pl 8~cosu!,

~3.11!

s tot~k!5
4p

k2 (
l 50

`

~2l 11!sin2 d l . ~3.12!

Our Eqs.~3.10!–~3.12! are Eqs.~4.63!, ~4.68!, and~4.71! of
Ref. @6#.

On matching the interior solution Eq.~3.7! and the exte-
rior solution Eq.~3.9! at r 5R while taking the discontinuity
parametersa and b into account@see Eqs.~3.3! and ~3.4!#,
we find that
ve

e
ns

-

~11a!Cl j l~k0R!5 j l~kR!2tand lnl~kR!, ~3.13!

and

~11b!Clk0 j l8~k0R!5k@ j l8~kR!2tand lnl8~kR!#.
~3.14!

Here

j l8~k0R!5
d j l~x!

dx U
x5k0R

, ~3.15!

j l8~kR!5
d j l~x!

dx U
x5kR

, ~3.16!

nl8~kR!5
dnl~x!

dx U
x5kR

. ~3.17!

Dividing Eq. ~3.13! by Eq. ~3.14! and defining the param
eters

g l[k0

j l8~k0R!

j l~k0R!
, ~3.18!

r~a,b![
11b

11a
, ~3.19!

one readily finds that

tand l5
k j l8~kR!2r~a,b!g l j l~kR!

knl8~kR!2r~a,b!g lnl~kR!
. ~3.20!

It follows on comparison of these results with those of R
@6# for the case whena5b, that the field discontinuities will
have no influence on the phase shift, and hence on the s
tered field. We recall that forl 50

j 0~x!5
sinx

x
, n0~x!52

cosx

x
. ~3.21!

If we also choosea5b, then Eq.~3.20! reduces to

tand05
k tan~k0R!2k0 tan~kR!

k tan~kR!tan~k0R!1k0
, ~3.22!

which is Eq.~4.154! of Ref. @6#.
The relative size of the scatterer determines the numbe

partial waves over which the summation in Eq.~3.6! has to
be carried out. Significant scattering will only occur for tho
waves for whichl<kR ~see, e.g., Ref.@6#, p. 73!.

Equation ~3.20! is an expression ford l in terms of the
discontinuity parametersa andb. If, because of the discon
tinuities that are now taken into account, the phase s
changes, the scattering amplitude will also change, and
will the total scattering cross section which depend ond l
through Eqs.~3.10! and ~3.12!, respectively. A numerica
example for a homogeneous scattering potential is prese
in Fig. 2. It indicates how the total scattering cross sect
s tot depends on the the discontinuity parametersa and b.
The ranges ofa and b correspond to 1,e/e0,4 @cf. the
expressions fora andb below Eq.~3.4!#. Over these ranges
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the total scattering cross section varies by about a factor o
In this example the first seven partial waves were taken
account. Higher-order contributions were found to be ne
gible.

IV. SCALAR SCATTERING THEORY

In this section we develop a scalar potential scatter
theory that takes field discontinuities at boundaries into
count. Consider a scatterer of constant refractive indexn,
occupying a volumeV, in free space~see Fig. 3!. The exte-
rior volume is denoted asṼ. The time-harmonic fieldU sat-
isfies the Helmholtz equation

~¹21k2!U~r !50 ~rPṼ!, ~4.1!

~¹21n2k2!U~r !50 ~rPV!. ~4.2!

FIG. 2. The total scattering cross sections tot , given by Eqs.
~3.12! and~3.20!, for scattering of a plane scalar wave on a sphe
cal potential, as a function of the discontinuity parametersa andb,
with k533107 m21, k0553107 m21, and R5831028 m. The
total scattering cross section is expressed in units of 10213 m2.

FIG. 3. Scattering volumeV containing a homogeneous mediu
with refractive indexn. The volume is bounded by the surfaceSand
n is the unit outward normal. The exterior volume is denoted byṼ.
5.
to
i-

g
-

Herek is the free-space wave number and a time-depend
factor exp(2ivt) has been suppressed. We introduce a s
tering potentialF by rewriting Eq.~4.2! in the form

~¹W 21k2!U~r !524pF~r !U~r !, ~4.3!

with

F~r ![
k2

4p
@n2~r !21#, ~4.4!

and

n~r !5H n0 if rPV,

1 if rPṼ,
~4.5!

wheren0 is a real-valued constant. The Green functionG of
the Helmholtz operator satisfies the equation

~¹W 21k2!G~r ,r 8!524pd~r2r 8!. ~4.6!

We chooseG to be an outgoing spherical wave, i.e.,

G~r ,r 8!5
eikur2r8u

ur2r 8u
. ~4.7!

Let n̂8 be the outward unit normal on a surfaceS8 which
bounds a domain of volumeV8. It should be noted that we
no longer restrict our analysis to a spherical scatterer, i.e.
shape is now arbitrary. By using Green’s theorem and E
~4.3! and ~4.6! one finds that

24pE
V8

d~r2r 8!U~r 8!d3r 8

14pE
V8

G~r ,r 8!F~r 8!U~r 8!d3r 85S8~r !, ~4.8!

with

S8~r ![E
S8

S U~r 8!
]G~r ,r 8!

]n8
2G~r ,r 8!

]U~r 8!

]n8 DdS8.

~4.9!

The volumeV8 is taken either asV, or V. which denote the
domainsV and Ṽ, respectively, without their boundary su
face S. Following the analysis of Ref.@7# we choose the
observation pointr to lie either withinV, ~then r5r,!, or
within V. ~thenr5r.!. The four possible combinations an
the resulting forms of Eq.~4.8! are

~1! r5r, , V85V,:

U~r,!5E
V,

G~r, ,r 8!F~r 8!U~r 8!d3r 82
1

4p
S2~r,!,

~4.10!

~2! r5r, , V85V.:

05
1

4p
S2~r,!2

1

4p
S`~r,!, ~4.11!

-
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PRE 59 2359POTENTIAL SCATTERING WITH FIELD . . .
~3! r5r. , V85V.:

U~r.!5
1

4p
S1~r.!2

1

4p
S`~r.!, ~4.12!

~4! r5r. , V85V,:

05E
V,

G~r. ,r 8!F~r 8!U~r 8!d3r 82
1

4p
S2~r.!.

~4.13!

Here

S6~r ![E
S6

S U~r 8!
]G~r ,r 8!

]n
2G~r ,r 8!

]U~r 8!

]n DdS,

~4.14!

whereS1 and S2 are the inside limit and the outside lim
from the surfaceS, respectively, and

S`~r ![ lim
R→`

E
S~R!

S U~r 8!
]G~r ,r 8!

]nR
2G~r ,r 8!

]U~r 8!

]nR
DdS.

~4.15!

In Eq. ~4.15!, S(R) denotes the outer boundary of the exter
region Ṽ surrounding the scatterer, chosen for convenie
to be a sphere of radiusR, taken in the limit ofR→`.
Further,]/]nR denotes differentiation along the outward r
dial direction.

The surface integralS` may be readily evaluated and i
value does not depend on the form of the potential. To
this, let us expressU(r ) as the sum of an incident fieldU ( i )

and a scattered fieldU (s):

U~r !5U ~ i !~r !1U ~s!~r !. ~4.16!

The scattered field behaves at infinity as an outgoing sph
cal wave and consequently, as is well known,

lim
R→`

E
S~R!

S U ~s!~r 8!
]G~r ,r 8!

]nR
2G~r ,r 8!

]U ~s!~r 8!

]nR
DdS50.

~4.17!

On the other hand the incident fieldU ( i )(r ) obeys the Helm-
holtz equation throughout the whole space,

~¹21k2!U ~ i !~r !50, ~4.18!

and it follows from Eq.~4.8! with F50 that

1

4p
S`~r !52U ~ i !~r !, ~4.19!

for both r5r, and r5r. . On substituting Eq.~4.19! into
Eqs.~4.11! and ~4.12! we find that

1

4p
SS1~r,!52U ~ i !~r,! ~4.20!

and

U~r.!5
1

4p
SS1~r.!1U ~ i !~r.!. ~4.21!
r
e

e

ri-

Note that the formula~4.20! has the form of the extinction
theorem~see also Ref.@7#!.

Combining Eqs.~4.10!, ~4.11!, and ~4.19! we obtain an
expression for the field inside the scattering volume:

U~r,!5E
V,

G~r, ,r 8!F~r 8!U~r 8!d3r 8

1
1

4p
@SS1~r,!2SS2~r,!#1U ~ i !~r,!.

~4.22!

Similarly, from Eqs.~4.13! and ~4.21! we obtain an expres
sion for the field outside the scattering volumeV:

U~r.!5E
V,

G~r. ,r 8!F~r 8!U~r 8!d3r 8

1
1

4p
@S1~r.!2S2~r.!#1U ~ i !~r.!.

~4.23!

From Eqs.~4.22! and ~4.23! we see that if the field and its
derivative are both assumed to be continuous across the
faceS, then these expressions reduce to the usual result
the scattered field.

Let us consider the terms between brackets in Eqs.~4.22!
and ~4.23!. They can be written as

S1~r,!2S2~r,!5E
S
H DU

]G~r, ,r 8!

]n

2G~r, ,r 8!DS ]U

]n D J dS, ~4.24!

and

S1~r.!2S2~r.!5E
S
H DU

]G~r. ,r 8!

]n

2G~r. ,r 8!DS ]U

]n D J dS, ~4.25!

respectively, where we have used the definitions~3.1! and
~3.2!. Equations~4.24! and ~4.25! express the effect of the
field discontinuitiesDU and D(]U/]n) on the scattered
field. We briefly note the form that Eq.~4.23! takes when the
observation pointr. is in the far zone.

Let r̂ be the unit vector in the direction of the observati
point r.5r r̂ . In the far zone, askr→` with r̂ fixed, we
have

ur.2r 8u'r 2r 8• r̂ . ~4.26!

On substituting this approximation in the expression~4.7! for
the outgoing Green function we find that

G~r. ,r 8!'
eikr

r
e2 ikr8• r̂ ~kr→`!, ~4.27!
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]G~r. ,r 8!

]n
'n̂• r̂ ik

eikr

r
e2 ikr8• r̂ ~kr→`!. ~4.28!

To analyze the far field we use the approximations~4.26!–
~4.28! in Eq. ~4.23! and find that

U~r.!;U ~ i !~r.!1
eikr

r E
V,

e2 ikr8• r̂F~r 8!U~r 8!d3r 8

1
1

4p

eikr

r E
S
e2 ikr8• r̂F ik r̂•n̂DU2DS ]U

]n D GdS.

~4.29!

As is to be expected, not only the volume integral but a
the surface integral contributes to the far field.
o

V. CONCLUSIONS

We have shown how the usual approximate scalar the
for scattering of electromagnetic waves can be extende
take discontinuities of the field at the boundary of the sc
terer into account. This extension takes the form of an ad
tional integral over the surface of the scatterer. The integ
contains jumps of both the field and its normal derivative
is shown that in some cases the contribution of this surf
integral to the far field can be significant.
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