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Potential scattering with field discontinuities at the boundaries
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We discuss the validity of the approximate scalar theories for scattering of electromagnetic waves, which
implicitely assume that the field and its normal derivative are continuous at the the scatterer’s boundary.
However, as is well known certain components of the electromagnetic field are discontinuous across such a
boundary. We present a modified formalism that takes these discontinuities into account. We show that in some
case the total scattering cross section may differ appreciably from that predicted by the usual theory.
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PACS numbes): 41.20.Jb, 42.25.Fx, 42.25.Gy

[. INTRODUCTION whereas in our approach they are not. While we do not ad-
dress the question of how to determine the actual disconti-
Because of the complexity of the theory of scattering ofnuities, we obtain some quantitative results which indicate
electromagnetic waves on macroscopic bodies, the situatioiiat in some cases the effect may be significant even at large
is often highly idealized. A frequently used idealization con-distances from the scatterer. The relationship between
siders the scattering body to be a perfectly conducting meboundary value problems and saltus problems is discussed in
dium which, consequently, gives rise to a strong reflectedRef. [3].
wave. While this approximation is often adequate with mi- In Sec. Il of this paper some relations are noted which
crowaves and radio waves, it is seldom appropriate in thénvolve the discontinuities of electromagnetic field vectors
optical region of the electromagnetic spectrum. For examplefor scattering by bodies with sharp boundaries. In Sec. Il we
when one considers the scattering of a light wave at an apeonsider scalar scattering of a plane wave by a homogeneous
erture, the material of the screen containing the aperture igphere when the field and/or its normal derivative suffer a
frequently better approximated by assuming that the screefiscontinuity on its boundary surface. We show how the dis-
is highly absorbing rather than that it is highly reflecting. Thecontinuities affect the scattering cross section and we illus-
difference between these two situations is far reaching, belrate the results by a numerical example. In Sec. IV we ob-
cause in the case of a perfectly conducting medium one is lek®in a generalized integral equation of potential scattering
to a boundary value problem, whereas in all other cases on#hich includes the effects of discontinuities of the field and
encounters a saltus problem, i.e., a problem involving jump®f its normal derivative on the boundary.
of the electromagnetic field vectors at the boundary of the
medium.
Another approximation often used consists of ignoring the 1l. BEHAVIOR OF THE ELECTROMAGNETIC FIELD
polarization properties of the field by treating it as a scalar ~ACROSS THE BOUNDARY OF THE SCATTERER
field. While the scalar problem can often provide some in- . . . . , .
sight into the nature of the scattered field, its use disguises _Con_5|der _the tyvo-d_mensmnal scattering (_:on_flgu_ratlon
the following difficulty: As is well known some of the com- Which Is deplgteq |n_F|g. 1'.A current sheet distributian
ponents of the electromagnetic field vectors are discontinu- (Jx 0,0) which is situated in free space generates an elec-
ous across boundaries of the scattering bofli¢sThe field
discontinuities themselves depend on the generally unknown
field. It is this feature which makes electromagnetic scatter-
ing problems much more complicated than the quantum- x
mechanical problems of potential scattering. To our knowl- :L
edge the implications of the discontinuities in the field Yot
variable at sharp boundaries of scattering bodies have not
been previously investigated in the scalar model, except in P
Kottler's theory of diffraction at a black scredg]. In the
present paper we investigate how the usual scalar integral
equation formalism can be extended to take into account
possible field discontinuities. It is to be noted that in

Kottler's theory the field discontinuities are prescribed FiG. 1. A two-dimensional scattering configuration. A current
sheet(infinite in thex andy directions situated in free space, with
J=(J,,0,0), generates an electromagnetic field that is scattered by
*On leave from Dept. of Physics and Astronomy, Free University,the volumeV which has permittivitye. The pointsA, B, andP lie
Amsterdam, The Netherlands. on the boundary of the scattering volume.
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tromagnetic fielde=(E,0,0) andH=(0,H,,0). The field is (V-D)"=(V-D)"=0. (2.11)
scattered by an isotropic, homogeneous and nonconducting

mediumV with permittivity e. Both the current distribution where D(x,z) = €(x,z)E(x,z) is the electric displacement
and the scatterer are assumed to be infinite inytieection.  vector. Hence,

This implies that the field is independentyofin steady state,

with time dependence exp{wt), the x component of the e (7_Ex ++ "7_Ez ' -0 (2.12
first Maxwell equation in Sl units reduces to O\ ax 0z ' ’
dH,=iwe(x,2)Ey, (2.1 IE\ " [9E,\
€ + =0. (2.13
in source-free regions. The poift at the boundary of the 2 9z
scatterer is chosen so that the outward normal coincides with. .
the direction ofz. P lies in the plane= 0. Since botfH, and EInCEG(ﬁﬁO ande#0, we have, if we use Eq2.10,
E, are tangential to the boundary Rt they are continuous JEN*T  [9E.\
there. However, it follows immediately from E¢R.1) that ( azz) = azz) . (2.19

the derivatived,H, is discontinuous aP. If we define
By using the well-known “pill box™ construction(Ref.

oH,\ ™ oH ;
(_y) = lim — =i weE,(P), (2.20  [1], Sec. 1.1.3 it can be shown that for the normal compo-
9z z--0 92 nent of the electric field at points betwe@rand B
IH\ T dH €oE =€E, , (2.195
(a—zy) = lim — =iweEy(P), 2.3 0Tz
z—+0 or, equivalently,
then €
E*—Ez(——l E, . (2.19
A(&Hy)_<ﬁHy)+ ((?Hy) 2.4 z 77 e ‘
9z 9z 9z ' We conclude that in this configuration the outside limit of

JH\ -~ the normal derivativelE,/dz at points that lie betweeA
=iwE,(P)(ey— €)= (@_ 1) (_Y) _ andB is equal to the inside limit, whereas the field compo-
25 nentE, has a discontinuity there.

We conclude that in this configuration the field component!ll. PLANE WAVE SCATTERING BY A HOMOGENEOUS
H, is continuous atP, whereas the normal derivative = SPHERE IN THE PRESENCE OF DISCONTINUITIES

dHy(P)/9z has a discontinuity. As an example of how a field discontinuity can affect the
Next consider the boundary points=(x;,0,2) andB 5 field and the cross section in a scattering process, we
=(x2,0,2) in Fig. 1. The portion of the boundary between .qnsjder the scattering of a scalar plane wave by a homoge-
them is parallel to thex axis. Sincek, is tangential to the  equs sphere. We use the method of partial waves which is
boundary, described, for example, in Refg4—6]. Our objective is to
E(A)"=E (A)" (2.6) ob';ain an expression for the phase shift, from which the scat-
X X ' ' tering amplitude and the total scattering cross section can be
E((B)" =E((B) , (27 delermined . o
e assume that both the fielsland its derivative)U/dn
where, as before and — indicate that the limit is taken along the outward normal have a finite discontinuity at the
from outside and from inside the boundary of the scattererpoundary of the scatterer:
respectively. One has

AU=UY(r)—uU(r), (3.)
IEL(B)\ "
EX(B)+_EX(A)+:(X2_X1)( | T 28 U\ [aU(n\*t [auU(r)\ "~
A(an)_< an ( an ) ' 3.2
_ _ JEL(B) |~
Ex(B)” —Ex(A) :(XZ_Xl)( o ) + (2.9  As before, the superscripts and — indicate limiting values

taken from outside and inside of the scatterer, respectively.

follows that A(dU/gn) are proportional tdJ ™~ and (@U/dn)~, respec-

tively, i.e.,
IE,\ T [ IE,
x|\ ax

for any boundary point betweeA and B. In addition, we A U\ _ (U (3.4
have at these points an an ' '

, (2.10 AU=aU (r), (3.3
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wherea and 8 are constantgln the first example of Sec. Il

a=0, B=(ey/e—1), and in the second example=(€/ ;
—1), B=0]

Let us consider a homogeneous scattering potehtiaf
the form

Fo if r<R,

FO=10 it r>R

(3.5

whereF, is a real-valued constant. We expand the field in
spherical harmonics. We assume that the incident plane wave
propagates along theaxis. The azimuthal dependence then

drops out, and we have

uk(r,a)=|:Zo a,(K)U, ((r)P,(cosé), (3.6

with a,;(k) being expansion coefficient the free space

wave numberU, (r) radial functions, and? (cosé) Leg-
endre polynomials. Inside the scatterel,, is taken to be
proportional to the spherical Bessel functipkor):

U k(r)=Cyji(kor) (r<R), (3.7
with

ko=k?+Fq (3.8

andC, are constants. Outside the scatterer, the field may be
expressed as a superposition of spherical Bessel functions

ji(kr) and spherical Neumann functiong kr):

U, k(r)=j(kr)—tangni(kr) (r>R). (3.9
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(1+a)Cij (kR)=j (KR —tansn(kR),  (3.13
and
(14 B)Ckoj| (koR)=K[ ]| (kR)—tandn/ (kR)].
(3.14
Here
d
i (koR)= J'(XX) , (3.15
x—k0
R =09 (3.16
x=kR
/(kRy=2110) (3.17
n = . .
| dX x=kR

Dividing Eq. (3.13 by Eq. (3.14 and defining the param-
eters

. Ji(keR)
_1+B
plaB)=1_. (3.19

gne readily finds that

kij/ (kR)— , i (KR
tans, = J|,( )—p(a,B)vji(KR) . (3.20
kn/ (kR)—p(a,B) vini(kR)

It follows on comparison of these results with those of Ref.

The constaniC, and the phase shif, are determined by [6] for the case whem = 3, that the field discontinuities will
matching the interior solutiofB.7) and the exterior solution have no influence on the phase shift, and hence on the scat-

(3.9 atr=R, taking the boundary discontinuiti¢3.1) and

tered field. We recall that fdr=0

(3.2 into account. From the phase shift, the scattering am-

plitude f(6,k),
do(6,k)/dQ and the total scattering cross sectipg(k) can
be calculated, and one finds that

f(o, k)—ikZ 21+ 1)P,(cosd)(e?—1), (3.10

do(0.K) 1 & < s s o
10 =P|20|§Oe(5l ') sin & sin ).
X (21+1)(21"+1)P,(cosh)P,,(cosh),
(3.1
A .
oK) = ?;0 (21+1)sir? 5, . (3.12

Our Egs.(3.10—(3.12 are Egs(4.63, (4.68, and(4.72) of
Ref. [6].

On matching the interior solution E¢3.7) and the exte-
rior solution Eq.(3.9) atr =R while taking the discontinuity
parametersy and 8 into accountsee Eqs(3.3 and(3.4)],
we find that

the differential scattering cross section

cosy

, No(X)=— X

. sinx
Jo(x)= ~ (3.21)

If we also choosex= 3, then Eq.(3.20 reduces to

k tan(koR) — ko tan(kR)

8N %=} far(kR)tar(koR) + Ko °

(3.22

which is Eq.(4.154 of Ref. [6].
The relative size of the scatterer determines the number of
partial waves over which the summation in E§.6) has to
be carried out. Significant scattering will only occur for those
waves for which <kR (see, e.g., Ref6], p. 73.
Equation(3.20 is an expression fop, in terms of the
discontinuity parametera and 8. If, because of the discon-
tinuities that are now taken into account, the phase shift
changes, the scattering amplitude will also change, and so
will the total scattering cross section which depend &n
through Egs.(3.10 and (3.12), respectively. A numerical
example for a homogeneous scattering potential is presented
in Fig. 2. It indicates how the total scattering cross section
oot depends on the the discontinuity parameterand .
The ranges ofx and B correspond to ¥ e/ey<4 [cf. the
expressions for and 8 below Eq.(3.4)]. Over these ranges,
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Herek is the free-space wave number and a time-dependent
factor expt-iwt) has been suppressed. We introduce a scat-
tering potentialF by rewriting Eq.(4.2) in the form

(V2+k)U(r)=—4mF(r)u(r), 4.3
with
k2
F(r)EE[nz(r)—l], (4.4)
and
ng if reV,
FIG. 2. The total scattering cross sectiof,, given by Egs. n(r)= 1 if reV, (4.5

(3.12 and(3.20), for scattering of a plane scalar wave on a spheri-
cal potential, as a function of the discontinuity parameteesd 3,
with k=3x10"m™?, ko=5x10"m™%, and R=8x10"8m. The
total scattering cross section is expressed in units of 4?7,

whereng is a real-valued constant. The Green funcii@®wof
the Helmholtz operator satisfies the equation

=2 2 " — !
the total scattering cross section varies by about a factor of 5. (VEHKIG(rr')=—4mo(r—r’). (4.6

In this example the first seven partial waves were taken im(\)/\/e chooseG o be an outdoind spherical wave. i.e
account. Higher-order contributions were found to be negli- going sp P
gible.

ikjr—r’|
G(r,r')y=——7

. @.7)
IV. SCALAR SCATTERING THEORY lr—r’|

In this section we develop a scalar potential scattering Let i’ be the outward unit normal on a surfa8ée which
theory that takes field discontinuities at boundaries into acbounds a domain of volume’. It should be noted that we
count. Consider a scatterer of constant refractive index no longer restrict our analysis to a spherical scatterer, i.e., its
occupying a volume/, in free spacdsee Fig. 3 The exte- shape is now arbitrary. By using Green’s theorem and Egs.
rior volume is denoted a¢. The time-harmonic field) sat- (4.3 and(4.6) one finds that
isfies the Helmholtz equation

_ ! ’ 3.7
(VZ+kHU(=0 (reV), 4.1 4ij,6(r rHUrdT

(V2+n%k®)U(r)=0 (reV). (4.2) +477f G(r,r)F(r"Hu(r"H)d3'=3"(r), (4.9
V/

with

aG(r,r’ au(r’
2'<r>5fs,(uu')%”—e<r,r'> AR

3 ds'.

4.9

The volumeV' is taken either a¥~ or V-~ which denote the
domainsV andV, respectively, without their boundary sur-
face S. Following the analysis of Ref.7] we choose the
observation point to lie either withinV< (thenr=r_), or
within V= (thenr=r.). The four possible combinations and
the resulting forms of Eq4.8) are

D r=r., V' =V=<:

S _f ' 2 ' 3,7 1 —
U(ro)=| G(ro ,r")FrHu(r)d’r’ — —X7(ro),
V< 4
v (4.10

@r=r.,V'=V":
FIG. 3. Scattering volum¥ containing a homogeneous medium
with refractive indexh. The volume is bounded by the surfégand

1 1
n is the unit outward normal. The exterior volume is denote&/by 0= ETE (ro)= EE (ro), 4.1
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B)r=r.,V'=V"_: Note that the formuld4.20 has the form of the extinction
L L theorem(see also Ref.7]).
T o5+ T S Combining Egs.(4.10, (4.11), and (4.19 we obtain an
u(r-) 4772 (r>) 477E (r>), (4.12 expression for the field inside the scattering volume:
@r=r., V' =V=:
U(r<)=f G(r—,r")F(r"Hu(r’)d3r’
V<

o—fe “YE(r’)U(r')d3r’ 12*
= - (r=,r")F(r"Hu(r’) M= (r-).

+i 3, S+ —-35- +uU®
(4.13 2727 (ral (ro).
Here (4.22
TN ,, 96(r,r") ,, ou(r’) Similarly, from Egs.(4.13 and (4.21) we obtain an expres-
2 (r)-fy(U(r ) an G(rr’) an ds, sion for the field outside the scattering voluivie

(4.19
whereS" andS™ are the inside limit and the outside limit U(r>)=f G(r=,r")F(r")Hu(r)d3’
from the surfaces, respectively, and Ve

1 :
aG(r,r’ au(r’ st _3- 0]
3(r)= lim f (U(r’)—( LG 2 ))ds g (3T T2 UTr).
Row J S ang Ing
(4.15 (4.23

In Eq. (4.15, S® denotes the outer boundary of the exterior From Eqs.(4.22 and (4.23 we see that if the field and its
regionV surrounding the scatterer, chosen for conveniencélerivative are both assumed to be continuous across the sur-
to be a sphere of radiuR, taken in the limit of R—oe. face S, then these expressions reduce to the usual results for

Further,d/dng denotes differentiation along the outward ra- the scattered field. .
dial direction. Let us consider the terms between brackets in E482)

The surface integral,” may be readily evaluated and its @nd(4.23. They can be written as
value does not depend on the form of the potential. To see
this, let us expresB (r) as the sum of an incident field SHr)—3S(r )_f AU IG(r<,r')
and a scattered field ®: < <7 s an

Ur)=u(r)+us(r). 4.1 au

S S S 419 —G(Q,W)A(E)]ds (4.249
The scattered field behaves at infinity as an outgoing spheri-

cal wave and consequently, as is well known,

lim f
R— o S(R)

and
aG(r,r’)_G(r r,)au<3>(r') 4=
an ' JNg o E+(r>)—2‘(r>):”AU
(4.17) S

On the other hand the incident fieltf(r) obeys the Helm- —G(r- ,r’)A(E)]dS 4.29
holtz equation throughout the whole space, an

us(r’) IG(r-.r')

an

(V2+k3HUD(r) =0, (418  respectively, where we have used the definiti¢84) and
) ) (3.2). Equations(4.24) and (4.25 express the effect of the
and it follows from Eq.(4.8) with F=0 that field discontinuitesAU and A(JU/dn) on the scattered
1 field. We briefly note the form that E€4.23 takes when the
—3*(r)=—UW(r), (4.19 observation point- is in the far zone.

Letf be the unit vector in the direction of the observation

for bothr=r_ andr=r. . On substituting Eq(4.19 into pointr.=rf. In the far zone, akr—e with f fixed, we

Egs.(4.11) and (4.12 we find that have
1 . [rs—r'|~r—r’-F. (4.26
225 () =-u"(r) (4.20
On substituting this approximation in the expresdury) for
and the outgoing Green function we find that

1 ) eikr o
U(r>)=EES+(r>)+U“)(r>). (4.22) c;(|r>,|r')~7er'kr T (kr—o), (4.27)
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AG(r- ,r’ gkr
%Mﬁ-fikTe—'kr T (kr—w). (4.28

To analyze the far field we use the approximati¢h26)—
(4.28 in Eqg. (4.23 and find that

) eikr o
U(r>)~u<'>(r>)+7f e T TR(r)U(r)d3r’
V<

1 ek o U
+—— [ e ™" ikf-AAU—-A| —] |dS.
47 r Js on

(4.29

V. CONCLUSIONS

We have shown how the usual approximate scalar theory
for scattering of electromagnetic waves can be extended to
take discontinuities of the field at the boundary of the scat-
terer into account. This extension takes the form of an addi-
tional integral over the surface of the scatterer. The integral
contains jumps of both the field and its normal derivative. It
is shown that in some cases the contribution of this surface
integral to the far field can be significant.
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